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Universidad de Valencia-CSIC, 46100-Burjassot (Valencia), Spain

E-mail: j.gauntlett@imperial.ac.uk, eoin.ocolgain@imperial.ac.uk,

oscar.varela@ific.uv.es

Abstract: By studying classes of supersymmetric solutions of D = 11 supergravity with

AdS5 factors, we determine some properties of the dual four-dimensional N = 1 super-

conformal field theories. For some explicit solutions we calculate the central charges and

also the conformal dimensions of certain chiral primary operators arising from wrapped

membranes. For the most general class of solutions we show that there is a consistent

Kaluza-Klein truncation to minimal D = 5 gauged supergravity. This latter result allows

us to study some aspects of the dual strongly coupled thermal plasma with a non-zero R-

charge chemical potential and, in particular, we show that the ratio of the shear viscosity

to the entropy density has the universal value of 1/4π.

Keywords: AdS-CFT Correspondence, M-Theory.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep022007049/jhep022007049.pdf

mailto:j.gauntlett@imperial.ac.uk
mailto:eoin.ocolgain@imperial.ac.uk
mailto:oscar.varela@ific.uv.es
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
7
)
0
4
9

Contents

1. Introduction 1

2. Flux quantisation and central charges 3

2.1 B4 = KE4 4

2.2 B4 = S2 × S2 6

2.3 B4 = S2 × T2 and Yp,q 8

3. Supersymmetric membranes and chiral primaries 9

3.1 B4 = KE4 11

3.2 B4 = S2 × S2 11

3.3 B4 = S2 × T2 and Yp,q 12

4. Consistent truncation 12

4.1 The ansatz 13

4.2 R-charge 14

4.3 Thermal plasma 15

5. Discussion 16

A. κ-symmetry 16

B. Fermions and consistent truncation 18

C. Consistent truncation and normalisation of R-charge 19

1. Introduction

A classification of the most general supersymmetric solutions of D = 11 supergravity that

consist of a warped product of AdS5 with a six-dimensional compact manifold M6 was

presented in [1]. Via the AdS/CFT correspondence these correspond to the most general

class of four-dimensional conformal field theories (CFTs) with N = 1 supersymmetry that

have M-theory duals. It was shown that M6 has a canonical SU(2) structure that is

related to the four-form flux and the warp factor, via some differential conditions. In the

special sub-class where an almost complex structure on M6 is assumed to be integrable,

the differential conditions were integrated in [1] and a rich class of explicit solutions were

constructed. For these explicit solutions the manifold M6 is topologically an S2 bundle

over a four-dimensional base manifold B4.
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For the special case of explicit solutions where B4 = S2 ×T 2, after dimensional reduc-

tion and T-duality one obtains the AdS5 × Y p,q solutions of type IIB string theory where

Y p,q are an infinite class of Sasaki-Einstein metrics [1, 2]. For this class of solutions the

dual conformal field theories were identified in [3] and this has led to many further develop-

ments. It would be desirable to have a similar understanding of the conformal field theories

dual to the other explicit AdS5 ×w M6 solutions discovered in [1]. Here, as a step in this

direction, one of our goals will be to study the explicit solutions of [1] in more detail and

extract some quantities of the dual CFT. We begin by determining the conditions imposed

by quantisation of the four-form flux and then use this to calculate the central charges of

the CFT. For the B4 = S2 × T 2 case, we recover the known formula [2] for the central

charge which has, for fixed p and q, an N2 scaling corresponding to the dual CFT being

a gauge theory. For all other B4 we find that the central charge scales like N3, just as for

the six-dimensional (2, 0) field theory that lives on M5-branes [4], indicating that the dual

CFT is something exotic.

We next study supersymmetric probe membranes that wrap two-cycles in M6, which

correspond to chiral primary operators in the dual CFT. We first identify a generalised

calibration [5] that can be constructed from the Killing spinors. We argue that if the

membrane worldvolume is calibrated by the generalised calibration then it is supersym-

metric. We determine the supersymmetric cycles for the explicit solutions and calculate

the conformal dimensions of the chiral primaries finding that they all scale like N .

The final topic is a study of some aspects of the strongly coupled thermal plasma of

the CFTs. Recall that the long distance, low-frequency behaviour of an interacting quan-

tum field theory at finite temperature is expected to be well-described by fluid dynamics.

Starting with the work of [6] there has been a number of papers that calculate various

transport co-efficients, such as shear viscosity, η, and diffusion constants, for quantum field

theories that have gravity duals. This is achieved by studying fluctuations about black hole

geometries and employing the AdS/CFT correspondence. Following [6 – 9] it was shown

that, in the absence of chemical potentials, the ratio of shear viscosity to entropy density,

η/s, is universal and equal to 1/4π [10, 11]. For the case of N = 4 super-Yang-Mills theory

it was subsequently shown that this universal result persists in the presence of non-zero

R-charge chemical potentials in [12 – 14] (a calculation for the theory living on M2-branes

was performed in [15]). Most recently, it was shown in [16] that η/s = 1/4π is also valid for

the N = 1 gauge theories that are dual to AdS5 × SE5 solutions of type IIB supergravity,

where SE5 is an arbitrary five-dimensional Sasaki-Einstein space.

Here we will show that for the CFTs dual to the most general supersymmetric AdS5

solutions of [1] (i.e. not just the explicit solutions) we also have η/s = 1/4π. This is

noteworthy since, as remarked above, the CFTs dual to these solutions must, in general,

be quite different to the gauge theories that are dual to the Y p,q spaces. In addition we

show that the speed of sound in the plasma is 1/
√

3.

Our approach for obtaining these results will follow that of [16]. It was shown in [16]

that there is a consistent Kaluza-Klein truncation of type IIB supergravity on any D = 5

Sasaki-Einstein space to minimal five-dimensional gauged supergravity. The gauge field

of the gauged supergravity corresponds to the R-symmetry of the CFT. This means that
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any solution of the gauged supergravity will give rise to an exact solution of type IIB

supergravity. This is remarkable since such consistent truncations are not common (see [17]

for a relevant discussion). By studying some charged black hole solutions of the five-

dimensional gauged supergravity, the authors of [16] then used the consistent truncation

to extract results about the hydrodynamics of the thermal plasma of the dual CFT.

Here we will show that for the most general AdS5 ×w M6 solutions of [1] there is also a

consistent truncation to five-dimensional minimal gauged supergravity. This result allows

us to directly import some of the analysis of [16] to obtain the properties about the thermal

plasma mentioned above.

The plan of the rest of the paper is as follows. Section 2 analyses flux quantisation and

derives the central charges for some of the explicit solutions of [1]. Section 3 discusses su-

persymmetric wrapped membranes and, for the explicit solutions of section 2, we calculate

the conformal dimension of the associated chiral primary operators. Section 4 discusses

the consistent Kaluza-Klein truncation and this is used to normalise the R-charge of the

wrapped membranes and also to study the hydrodynamics of the dual CFT. Section 5

briefly concludes.

2. Flux quantisation and central charges

The class of supersymmetric solutions of D = 11 supergravity that we shall consider in

this paper were first analysed in [1]. The D = 11 metric is a warped product

ds2 = L2e2λ[ds2(AdS5) + ds2(M6)], (2.1)

where λ only depends on the coordinates of M6. The metric ds2(AdS5) is that of a unit

radius AdS5 and the length scale L fixes the overall scale. The four-form flux G(4) is a

four-form just on M6. In general, it was shown that M6 has an SU(2) structure constructed

from the Killing spinors that is specified by two one-forms K1, K2, a real two-form J , a

complex two-form Ω and a scalar cos ζ. The metric on M6 can be written

ds2(M6) = eiei + (K1)2 + (K2)2, (2.2)

with J = e1e2 + e3e4 and Ω = (e1 + ie2)(e3 + ie4) where the products of forms are taken

to be wedge products. The vector dual to cos ζK2 is a Killing vector which is related to

the R-symmetry of the dual CFT as we shall discuss later. Introducing coordinates where

this Killing vector is given by 3∂ψ one can show that the metric can be written

ds2(M6) = g4
ijdxidxj + e−6λ sec2 ζdy2 +

1

9
cos2 ζ(dψ + ρ)2, (2.3)

where g4
ij , λ, ζ and ρ are all functions of xi and y. In these coordinates we have K1 =

e−3λ sec ζdy and K2 = (1/3) cos ζ(dψ + ρ). The expression for the most general four-form

flux can be found in section 4. The precise conditions that need to be imposed in order to

get a supersymmetric solution, which include 2y = e3λ sin ζ, can be found in [1].

Some of this paper will focus on the explicit solutions of [1] which were constructed by

demanding that the natural almost complex structure on M6 is integrable and hence M6 is
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a complex manifold. In this case, topologically, M6 is an S2 bundle over a four-dimensional

base manifold B4 that is either Kähler-Einstein with positive curvature, and hence CP 2,

S2 ×S2 or a del-Pezzo dPk, k = 3, . . . , 8, or alternatively a product space S2 ×S2, S2 ×T 2

or S2 × H2 (one can also replace H2 with H2/Γ). The S2 fibration can be obtained by

taking the canonical line-bundle of the four-dimensional Kähler base space and adding a

“point at infinity” to each of the fibres. The detailed form of the metric on M6 and the

four-form for the explicit solutions of [1] that we shall study here will be given shortly.

In order to get a good solution of M -theory we need to ensure that the four-form flux

is properly quantised. In particular we demand that

NΣ4
≡ 1

(2π)3l311

∫

Σ4

G(4) ∈ Z (2.4)

for any four-cycle Σ4 on M6, where l11 is the D = 11 Planck length. As usual, this leads

to a quantisation condition on the length scale L.

The central charge of the dual conformal field theory can be obtained from the for-

mula [18]

c =
πR3

AdS5

8G5
. (2.5)

where G5 is the effective five-dimensional Newton constant and RAdS5
is the radius of AdS5

in the five-dimensional theory. Taking the warp factor into account, a short calculation

shows that

c =
1

27π6

(

L

l11

)9 ∫

M6

d6x
√

g(M6)e
9λ. (2.6)

We now consider three explicit examples in turn. When B4 is Kähler-Einstein, when

B4 = S2 × S2 and when B4 = T 2 × S2. The case B4 = S2 × H2 is very similar to the

S2 × S2 case and for simplicity of presentation we omit the details.

2.1 B4 = KE4

For this case the general solutions of [1] depend on two parameters b and c. The internal

metric is given by

ds2(M6) =
e−6λ

3
(b − y2)ds2(KE4) + e−6λ sec2 ζdy2 +

1

9
cos2 ζDψ2, (2.7)

with

e6λ =
2(b − y2)2

cy + 2b + 2y2
, (2.8)

cos2 ζ =
−3y4 − 2cy3 − 6by2 + b2

(b − y2)2
(2.9)

and ds2(KE4) is (a y independent) four-dimensional Kähler-Einstein metric with positive

curvature. We shall normalise this metric so that R = JKE where R is the Ricci-form and

JKE is the Kähler form. We also have Dψ ≡ dψ + P where P is the connection on the

canonical bundle of the KE4, i.e. dP = R. The S2 fibre is parametrised by y and ψ: the
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coordinate ψ is periodic with period 2π and y lies in an interval y1 ≤ y ≤ y2 where the yi

are appropriate roots of the quartic in the numerator of cos2 ζ. The four-form flux is given

by

1

L3
G(4) =

4y3 + 3cy2 + 12by + bc

18(y2 − b)
volKE4

+
y4 − 6by2 − 2bcy − 3b2

9(y2 − b)2
JKEdyDψ, (2.10)

where the products of forms are taken to be wedge products.

In order to keep the analysis simple, we will now restrict to the c = 0 class of solutions.

For this class one can rescale to set b = 1. The range of y is now easily determined from

3y4 + 6y2 − 1 = 0: we take y1 ≤ y ≤ y2 with

y1,2 = ∓
[

2√
3
− 1

]1/2

. (2.11)

To implement the flux quantisation condition (2.4) we need to identify a basis of four-

cycles. If we let the two-cycles Σa be a basis for H2(KE4, Z), then we can take the basis

to be Ca, CN where Ca are the four-cycles obtained by considering the S2 fibration over

the two-cycles Σa and CN is the four-cycle obtained by restricting y to lie at the “north

pole” of the two-sphere fibre by setting y = y2. Instead of CN we could also consider the

four-cycle CS sitting at the “south pole” of the fibre by setting y = y1.

It will be useful to introduce some notation concerning the KE4 base space. In par-

ticular we have

n(Σa) =
1

2π

∫

Σa

R = mna, (2.12)

where the positive integer m is known as the Fano index of KE4 and is the largest positive

integer such that all of the na are integers. We also define

M =
1

4π2

∫

KE4

R∧R (2.13)

and we note that M is always divisible by m2. For further discussion see e.g. appendix B

of [19], but we note here that the explicit values for (m,M) for CP 2 are (3, 9), for S2 ×S2

are (2, 8) and for dPk, k = 3, . . . , 8 are (1, 9 − k).

We now calculate the flux threading through the various cycles. Using (2.4), we find

NCN
= −

(

y2L
3(2 +

√
3)

18πl311

)

M,

NCa
= −

(

y2L
3(2 +

√
3)

18πl311

)

2mna. (2.14)

We note that NCS
= −NCN

. In order to ensure that NCN
and NCa

are indeed integers, we

choose the length scale L to be given by

y2L
3(2 +

√
3)

18πl311
=

N

h
, (2.15)
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where N is an arbitrary integer and h is the highest common factor of M and 2m. We

then have NCN
= −(M/h)N and NCa

= −(2m/h)naN .

Using (2.6), we are now in a position to determine the central charge in terms of these

brane charges and we find

c = 9(3
√

3 − 5)
M

h3
N3. (2.16)

2.2 B4 = S2 × S2

When B4 = S2 × S2 the general solutions of [1] depend on three parameters a1, a2 and c.

The metric takes the form

ds2(M6) =
e−6λ

3
(a1 − y2)ds2(S2

(1)) +
e−6λ

3
(a2 − y2)ds2(S2

(2))

+ e−6λ sec2 ζdy2 +
1

9
cos2 ζDψ2,

(2.17)

where ds2(S2
(1)) and ds2(S2

(2)) are both canonical unit radius metrics on two-spheres. Also,

again, Dψ = dψ + P with 0 ≤ ψ ≤ 2π and now dP = vol(S2
(1)) + vol(S2

(2)). We also have

e6λ =
2(y2 − a1)(y

2 − a2)

2y2 + cy + a1 + a2
,

cos2 ζ =
−3y4 − 2cy3 − 3(a1 + a2)y

2 + a1a2

(y2 − a1)(y2 − a2)
. (2.18)

The four-form flux is given by

1

L3
G(4) =

1

18(y2 − a1)(y2 − a2)

[

4y5 + 3cy4 + 4y3(a1 + a2) − cy2(a1 + a2)

−2y(a2
1 + a2

2 + 4a1a2) − ca1a2

]

vol(S2
(1))vol(S2

(2))

+
[y4 − y2(a2 + 5a1) − 2a1cy − a1a2 − 2a2

1]

9(y2 − a1)2
vol(S2

(2))dyDψ

+
[y4 − y2(a1 + 5a2) − 2a2cy − a1a2 − 2a2

2]

9(y2 − a2)2
vol(S2

(1))dyDψ. (2.19)

Observe that when a1 = a2 = a the solution is the same as the Kähler-Einstein class when

KE4 is taken to be S2 × S2.

For simplicity, in this section we shall again restrict to the c = 0 class of solutions. After

a rescaling the solution only depends on the ratio z = a1/a2. Without loss of generality

we can set

a1 = z, a2 = 1 (2.20)

and take 0 < z ≤ 1. The range of y is now easily determined from the zeroes of cos2 ζ and

we find

y1,2 = ∓
[

−1

2
(z + 1) +

1

6

√
X

]1/2

. (2.21)

where X = 9z2 + 30z + 9.
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To implement the flux quantisation we will consider the flux through the cycles C1, C2,

which are the obtained by considering the S2 fibration over S2
(1) (at a fixed point on S2

(2))

and S2
(2) (at a fixed point on S2

(1)), respectively, and CN , which is the four-cycle sitting at

the north pole, y = y2, of the two-sphere fibre. We find

NC1
= − y2L

3

18πl311

[

5 + 3z +
√

X
]

, (2.22)

NC2
= − y2L

3

18πl311

[

5z + 3 +
√

X
]

z
, (2.23)

NCN
= − y2L

3

18πl311

[

X + 3(1 + z)
√

X
]

3z
. (2.24)

Note that only two of the above charges are independent since NC1
+ NC2

= NCN
. Taking

the ratio of (2.22) to (2.24) we get the expression

NC2

NC1

=
1

z

[

(5z + 3) +
√

X
]

[

(5 + 3z) +
√

X
] , (2.25)

which can be made a rational number w by choosing z such that

z =
2 − w + 2w2 − 2

√
1 − w − w3 + w4

3w
. (2.26)

The range of z ∈ (0, 1] is covered once if we impose w ∈ [1,∞). Let us write w = p/q for

positive integers p and q with no common factors and p > q (we also allow p = q = 1) and

hence

z =
2q2 − qp + 2p2 − 2(p − q)

√

q2 + qp + p2

3pq
. (2.27)

We then choose the length scale L via

y2L
3

18πl311

[

5 + 3z +
√

X
]

= qN. (2.28)

This implies that NC1
= −qN , NC2

= −pN and NCN
= −(p + q)N are indeed all integers.

The central charge can now be calculated and we find that it can be written as

c =
33/2

26

[

9(z + 1)3 − (3z2 + 4z + 3)
√

X
]

z3/2
(pq)3/2N3. (2.29)

As a check on this result, we should be in a position to rederive the earlier central charge

for the KE4 base in the special case where the base is S2 × S2. Setting z = 1 (p = q = 1),

m = 2 and M = 8 we do indeed find agreement.

– 7 –
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2.3 B4 = S2 × T2 and Yp,q

We shall now consider the case when the base space B4 = T 2 × S2. Recall that after

dimensional reduction and T-duality, these solutions gave rise to the AdS5 ×Y p,q solutions

of type IIB string theory where Y p,q are Sasaki-Einstein spaces. The analysis of [2] of the

regularity of the Y p,q spaces and the quantisation of the five-form flux can be translated

into the M-theory setting. We now present some of the details.

The metric is given by

ds2(M6) = e−6λds2(T 2) +
1 − cy

6
ds2(S2) + e−6λ sec2 ζdy2 +

1

9
cos2 ζDψ2, (2.30)

where ds2(S2) is the metric on a unit radius two-sphere and ds2(T 2) is a metric on a two-

torus. As above, ψ has period 2π and Dψ = dψ + P now with dP = vol(S2) . We also

have

e6λ =
2(a − y2)

1 − cy
, (2.31)

cos2 ζ =
a − 3y2 + 2cy3

a − y2
, (2.32)

where a ∈ (0, 1) is constant. Here we will only consider c 6= 0 and so without loss of

generality we can set c = 1. The range of y is given by y1 ≤ y ≤ y2 where y1 and y2 are

the smallest roots of the cubic a − 3y2 + 2y3 = 0.

The four-form flux is given by

1

L3
G(4) =

−2y + y2 + a

6(a − y2)
vol(S2)vol(T 2) − 2(1 − y)

9
dyDψvol(S2)

− a + y2 − 2ay

3(a − y2)2
dyDψvol(T 2).

(2.33)

It was shown in [2] that the parameter a is fixed in terms of two relatively prime

integers p and q, p > q > 0 via:

a =
1

2
+

3q2 − p2

4p3

√

4p2 − 3q2. (2.34)

The explicit expressions for the roots yi are then given by

y1 =
1

4p

(

2p − 3q −
√

4p2 − 3q2
)

,

y2 =
1

4p

(

2p + 3q −
√

4p2 − 3q2
)

. (2.35)

The Y p,q spaces are U(1) bundles over a four-dimensional base-space with Chern-

numbers given by p and q. The size of the S1 fibre is 2πl, which means that the size of the

M-theory two-torus is 4π2(l11/L)3/l (see, e.g., section 6 of [19]). Furthermore, the overall

length scale of the type IIB solution translates into the parameter L of the D = 11 solution

taking the form
L3

12πl311
=

p2

q
[

2p +
√

4p2 − 3q2
]N, (2.36)
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where N is an arbitrary integer. Using this we can write

vol(T 2) = π
q2

[

p +
√

4p2 − 3q2
]

p2N
. (2.37)

We now confirm that these constraints ensure that the four-form flux is properly quan-

tised. If we let CS2 and CT 2 denote the four-cycles given by the S2 fibration over the S2

and T 2, respectively, and CN the four-cycle given by the north pole of the fibration, y = y2,

we find

NC
S2

= −N,

NC
T2

= −p,

NCN
= q − p. (2.38)

In addition we have NCS
= (q + p). To compare with the IIB results, one should choose a

different basis of four-cycles. In particular, instead of CT 2 and CN we choose (1/2)(CS−CN )

and (1/2)(CS + CN ) (these are the four-cycles C1 × T 2 and C2 × T 2 where the Ci are the

basis of two-cycles on the S2 fibration over S2 that were discussed in [2]). We find that

the corresponding fluxes are given by p and q, respectively.

Calculating the central charge using (2.6) we get

c =
3p2[3q2 − 2p2 + p

√

4p2 − 3q2]

4q2[2p +
√

4p2 − 3q2]
N2

=
π3N2

4V ol(Y p,q)
, (2.39)

in agreement with [2] as expected. Note that in contrast to the B4 considered in the last

two subsections, when B4 = S2×T 2, not all of the fluxes scale with N ; this leads to the N2

scaling behaviour for the central charge with fixed p and q, rather than the N3 behaviour

we saw previously.

3. Supersymmetric membranes and chiral primaries

We now consider probe membranes wrapping supersymmetric cycles on M6. These config-

urations correspond to chiral primaries in the dual conformal field theories. For the most

general class of solutions of [1] we claim that the conformal dimension of these operators

can be obtained from the formula

∆(Σ2) = τM2L
3

∫

Σ2

e3λvolM6
(Σ2). (3.1)

Here volM6
(Σ2) is the volume form of the cycle induced from the metric ds2(M6) and τM2 is

the tension of the membrane and is given in our conventions by τM2 = 1/(4π2l311). That the

volume of the wrapped brane (suitably dressed by the warp factor) should be associated

with the conformal dimension of the operators rather than the mass of the operators

was explained in the context of Sasaki-Einstein compactifications in type IIB supergravity

– 9 –
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in [20]. In the next section we will confirm that this is indeed the correct formula, by

showing that the conformal dimension is related to the R-charge of these operators by the

correct formula, ∆ = (3/2)R.

In order to be supersymmetric, the membranes must wrap two-cycles in M6 that are

calibrated by a certain two-form (generalised) calibration [5]. Recall [1] that the D = 11

Killing spinors of the most general solutions (2.1) have the form

ε = ψ ⊗ eλ/2ξ, (3.2)

where ψ is a Killing spinor on AdS5 and ξ is a non-chiral spinor on M6. The SU(2) structure

specified by J , Ω, K1, K2 and cos ζ can be constructed from bi-linears of ξ as explained

in [1]. Continuing to use the notation of [1], let us focus on the bi-linear two-form given by

Y ′ =
1

2
ξ̄γ(2)γ7ξ

= − sin ζJ + K1 ∧ K2. (3.3)

Using the results of [1] a short calculation now shows that Y ′ always satisfies the generalised

calibration condition

d(e3λY ′) = −iK̃2

G(4)

L3
(3.4)

where K̃2 = cos ζK2 is the one-form whose dual vector on M6 is Killing (in the coordinates

in (2.3) it is K̃2 = 3∂ψ). We now claim that if a membrane wraps a two-cycle Σ2 on M6

which is calibrated by Y ′, i.e.

volM6
(Σ2) = Y ′|Σ2

, (3.5)

then it is a supersymmetric configuration.

One way to see why Y ′ is the relevant object is to consider the two-form Ω̄, the

membrane generalised calibration, of the full D = 11 solution. Recall that for any super-

symmetric solution of D = 11 supergravity with a Killing spinor ε one can construct the

bilinears K̄, a one-form, and Ω̄, a two-form (there is also a five-form that is not relevant

for the present discussion). It was shown in [21] that Ω̄ satisfies the generalised calibration

condition dΩ̄ = iK̄G(4). Next, restricting to the class of supersymmetric AdS5 solutions

of interest, we can use the decomposition of the D = 11 Killing spinor (3.2) to show that

restricting to directions tangent to M6, we have Ω̄ → 2eλψ̄ψY ′ and K̄ → −2eλψ̄ψK̃2.

Properly taking into account the conformal factors then leads to (3.4).

We shall now give detailed expressions for the calibration two-form Y ′ (3.3) for the

explicit solutions of [1] that we considered in the last section, and then use this to elucidate

the corresponding calibrated cycles satisfying (3.5). As an extra check that we have indeed

properly identified supersymmetric cycles, we have carried out a direct analysis of the

κ-symmetry conditions in appendix A (similar calculations have been carried out in the

context of Sasaki-Einstein solutions in [22, 23]). Having identified the supersymmetric

cycles, the dimension of the corresponding chiral operators is determined using (3.1).
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3.1 B4 = KE4

For this case the calibration two-form (3.3) is given by

Y ′ = −e−6λ

3
(b − y2) sin ζJKE +

e−3λ

3
dyDψ. (3.6)

We now consider a membrane wrapping the two sphere fibre at a fixed point on the

KE4. From (2.7) the volume form for this cycle is simply (e−3λ/3)dydψ and hence it is

calibrated by Y ′. The dimension of the dual chiral primaries is given by (3.1) and, for the

class of solutions with c = 0, b = 1 for which we carried out the flux quantisation in the

last section, we find

∆ = 6(2 −
√

3)
N

h
. (3.7)

We can also consider a membrane wrapping a two-cycle on KE4 sitting at one of the

poles of the S2 fibration, y = y1, y2. Since at the poles we have sin ζ = ±1 it is clear

that a holomorphic two-cycle Ci on KE4, i.e. one that is calibrated by JKE, at y = y1, y2

is calibrated by Y ′. We can expand such a cycle in the basis Σa of H2(KE4, Z) that we

introduced in section 2.1 as Ci = Ca
i Σa where Ca

i ∈ Z. For membranes wrapping these

cycles, in the case that c = 0, b = 1, we then find that

∆ = 3(
√

3 − 1)
Ca

i mna

h
N. (3.8)

The fact that the ∆ is the same for either pole is because y2 = −y1.

3.2 B4 = S2 × S2

For this case we have

Y ′ = −e−6λ

3
(a1 − y2) sin ζvol(S2

(1)) −
e−6λ

3
(a2 − y2) sin ζvol(S2

(2)) +
e−3λ

3
dyDψ. (3.9)

The two-sphere fibre is again calibrated by Y ′. When c = 0, a1 = z, a2 = 1, membranes

wrapping this cycle gives rise to chiral primaries with

∆ =
3q

8
(5 + 3z −

√
X)N. (3.10)

In addition the two-spheres on the base, S2
(1) or S2

(2), located at either y = y1 or y = y2 are

also calibrated by Y ′. The conformal dimensions corresponding to the two-cycles on the

base at either pole are the same and are given, when c = 0, a1 = z, a2 = 1, by

∆(S2
(1)) =

3q

8
(−3z − 1 +

√
X)N,

∆(S2
(2)) =

3q

16z
(−3z2 − 8z + 3 + (1 + z)

√
X)N, (3.11)
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3.3 B4 = S2 × T2 and Yp,q

This case provides a good check on our formulae since we can compare with the dimension

of the chiral primaries that have already been calculated in the context of type IIB super-

gravity using the Sasaki-Einstein spaces Y p,q . For this case we find that the calibration

two-form is given by

Y ′ = −e−6λ

3
(a − y2) sin ζvol(S2) − e−6λ sin ζvol(T 2) +

e−3λ

3
dyDψ. (3.12)

The two-sphere fibre is once again calibrated by Y ′ and the corresponding conformal

dimension is given by

∆ =
p

q2
(2p −

√

4p2 − 3q2)N. (3.13)

After dimensional reduction and T -duality the wrapped membrane corresponds to a D3-

brane wrapping the three-cycle given by fixing a point on the round two-sphere in the Y p,q

space. Our result for ∆ agrees with that given in [24].

We next consider membranes wrapping the two-sphere by fixing a point on the T 2 and

fixing y = y1 or y = y2. These are calibrated by Y ′ and we find

∆(S2(y1)) =
1

2q2

(

−4p2 + 2pq + 3q2 + (2p − q)
√

4p2 − 3q2
)

N,

∆(S2(y2)) =
1

2q2

(

−4p2 − 2pq + 3q2 + (2p + q)
√

4p2 − 3q2
)

N. (3.14)

After dimensional reduction and T -duality these wrapped membranes correspond to D3-

branes wrapping three-cycles in Y p,q that were discussed in [25] and our formula for ∆ is

in exact agreement.

We can also consider membranes wrapping the T 2 by fixing a point on the S2 and

fixing y = y1 or y = y2. These are also calibrated by Y ′ and we find

∆(T 2(y1)) =
p

2q
(3q + 2p −

√

4p2 − 3q2),

∆(T 2(y2)) =
p

2q
(3q − 2p +

√

4p2 − 3q2). (3.15)

After dimensional reduction and T -duality these wrapped membranes correspond to mo-

mentum waves around the α direction in the Sasaki-Einstein picture. In fact these are

precisely the conformal dimensions of the long BPS mesonic operators L± of the dual

CFT that were noted in [26] where they were also identified with massless geodesics in the

AdS5 × Y p,q solutions.

4. Consistent truncation

In this section we show that for the most general class of supersymmetric AdS5 solutions

of [1] there is a consistent truncation to minimal five-dimensional gauged supergravity. We

shall argue that the abelian gauge field of the gauged supergravity theory can be identified

with the R-symmetry of the dual SCFT. We use this to determine the R-charges of the

– 12 –



J
H
E
P
0
2
(
2
0
0
7
)
0
4
9

chiral primaries dual to the wrapped branes discussed in the last section and demanding

that ∆ = 3/2R we derive the formula for ∆ presented in (3.1). Following this we discuss

some aspects of the fluid-dynamics of the thermal plasma of the SCFTs with non-zero

chemical potential.

4.1 The ansatz

The ansatz for the D = 11 metric is given by (2.1) where we replace the AdS5 metric with

an arbitrary D = 5 metric:

ds2 = L2e2λ[ds2
5 + ds2(M6)] (4.1)

with

ds2(M6) = g4
ij(x, y)dxidxj + e−6λ sec2 ζdy2 +

1

9
cos2 ζ(dψ + ρ + A)

= eiei + (e5)2 + (e6)2, (4.2)

where e5 ≡ K1 = e−3λ sec ζ and e6 = K2 + (1/3) cos ζA and i, j = 1, . . . , 4. Here we have

just made the shift dψ → dψ + A in the general metric (2.3) of [1].

The ansatz for the four-form is much less obvious. After some trial and error we find

that it is given by

1

L3
G(4) = dC̄ +

1

3
dy

[

(∗5F ) +
1

3
AF

]

(4.3)

where

C̄ = C0 +
1

3
A(e3λY ′) (4.4)

and L3dC0 is the four-form flux of the undeformed solution of [1] given below. After a

little reorganisation, one finds that

1

L3
G(4) = g +

e3λ

3
(− sin ζJ + K1e6)F +

1

3
e3λ cos ζK1(∗5F ) (4.5)

where g is the four-form flux given in [1] after the substitution dψ → dψ + A:

g = −1

2
e12λ∂y(e

−6λ)J2 − e−3λ sec ζ(∗4d4e
6λ)K1

−1

3
e6λ cos3 ζ(∗4∂yρ)e6 + e3λ

[

1

3
cos2 ζ(∗4d4ρ) − 4J

]

K1e6 (4.6)

We now substitute this ansatz into the D = 11 equations of motion:

Rµν − 1

12

(

Gµσ1σ2σ3
Gν

σ1σ2σ3 − 1

12
gµνG2

)

= 0,

dG(4) = 0, d ∗ G(4) +
1

2
G(4) ∧ G(4) = 0, (4.7)
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where G2 = Gσ1σ2σ3σ4
Gσ1σ2σ3σ4 . After some calculation1 using the conditions in [1], we

deduce that the D = 5 metric g and the two-form field strength F = dA must satisfy

Rab + 4gab −
1

6

[

FacFb
c − 1

6
gabF

2

]

= 0

d(∗5F ) +
1

3
F ∧ F = 0, (4.8)

where F 2 = FabF
ab. These equations can be derived from an action whose lagrangian is

given by
√−g

[

R + 12 − 1

12
F 2 +

1

108
εa1a2a3a4a5Fa1a2

Fa3a4
Aa5

]

(4.9)

which is precisely the bosonic Lagrangian of minimal D = 5 gauged supergravity.

We have thus shown that our ansatz is a consistent Kaluza-Klein truncation at the level

of bosonic fields. In particular, any bosonic solution of minimal D = 5 gauged supergravity

can be uplifted using the ansatz to give a solution of D = 11 supergravity that is based

on an arbitrary general supersymmetric AdS5 solution of [1]. In appendix B we show that

the Kaluza-Klein truncation is also consistent after including the fermions.

4.2 R-charge

Recall that the Killing vector ∂ψ arises in all supersymmetric AdS5 solutions of D = 11

supergravity and hence it must be related to the R-symmetry in the dual SCFT. Clearly

the ansatz for consistent truncation above involves gauging shifts of the coordinate ψ and

so it is natural to identify the gauge field A with the R-symmetry.

While we claim that this is indeed the right interpretation it is worth mentioning a

subtlety. In general the R-symmetry should be related to a linear combination of the

isometry generated by the Killing vector ∂ψ with gauge transformations of the D = 11

three-form potential C(3) which satisfies dC(3) = G(4). This can be seen in detail in the

context of the B4 = S2 × T 2 solutions. After dimensional reduction and T -duality the

Killing vector ∂ψ does not become the Reeb Killing vector of the Sasaki-Einstein space

itself (which is known to be dual to the R-symmetry) but rather a linear combination of

the Reeb vector with another Killing vector. The gauge transformations of C(3) account for

the latter Killing vector. In fact, we can be more explicit and show that if we dimensionally

reduce our ansatz above then we recover the ansatz for the consistent truncation of the

AdS5 × Y p,q solutions to metric plus R-symmetry gauge field that was discussed in [16].

This is carried out in appendix C.

We now want to calculate the R-charges of the chiral primaries dual to the wrapped

membranes that we considered in section 3. In the Lagrangian for a membrane wrapping

the supersymmetric cycle Σ2, the Wess-Zumino term gives rise to the term

τM2

∫

Σ2

C(3) =
1

2
RA. (4.10)

1The Bianchi identity for G4 is simple to verify. In checking the equations of motion for G4 we used

equations (2.47) and (2.49) of [1] and we also used the exterior derivative of e6λ times equation (2.16)

of [1]. In checking the Einstein equations we used the fact that the AdS5 is a solution and focused on the

F dependent pieces.
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In analogy with the way in which a classical Lagrangian particle of charge q travelling in

an electromagnetic field couples through a four-velocity term qAµvµ, we deduce that the

wrapped branes carry R units of R-charge. The factor of 1/2 appearing in (4.10) comes

from properly normalising the gauge field as we discuss in appendix C. In particular A/2

is the natural normalisation for the gauge field.

Now consider the expression for C(3) in the consistent truncation ansatz (4.3), (4.4).

Focussing on the terms that are linear in A we get

τM2

∫

Σ2

C(3) = A ∧
(

1

3
τM2L

3

)
∫

Σ2

e3λY ′

= A ∧
(

1

3
τM2L

3

)
∫

Σ2

e3λvolM6
, (4.11)

where we used the calibration condition (3.5). We thus deduce that the R-charge of the

supersymmetric wrapped membranes are given by

R =
2

3
τM2L

3

∫

Σ2

e3λvolM6
. (4.12)

Since for chiral primaries we have ∆ = 3
2R, this provides a derivation of our formula for ∆

given in (3.1).

4.3 Thermal plasma

The consistency of our Kaluza-Klein truncation implies, by definition, that any solution of

minimal gauged supergravity can be uplifted to eleven dimensions. In particular, black hole

solutions of minimal gauged supergravity with non-vanishing R-charge can be uplifted and

this allows us to extract non-trivial information about the hydrodynamics of the strongly

coupled thermal plasma of the dual field theory.

In fact the relevant calculations were all carried out in detail in [16] (these calculations

were extended from minimal gauged supergravity to a more general class of theories in [27]).

One first extracts the thermodynamical quantities of the black hole solutions using the

technique of [28]. To study the hydrodynamics of the thermal plasma dual to the black

holes, one needs to calculate the retarded Green’s function of the boundary stress tensor

using the prescription of [29]. The shear viscosity η can then be obtained from a Kubo

relation.

Using this analysis we conclude that for the most general supersymmetric AdS5 solu-

tions of M-theory, the thermal plasmas of the dual CFTs with non-zero R-charge chemical

potential all have the property that

η

s
=

1

4π
. (4.13)

In addition, again using the results of [16], we can conclude that the speed of sound in the

thermal plasma is 1/
√

3.
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5. Discussion

In this paper we have obtained some results about the CFTs dual to supersymmetric AdS5

solutions that were analysed in [1]. In section 2, for some explicit solutions, we explicitly

calculated the central charges of the dual CFTs. For the solutions with B4 = KE4 or

B4 = S2 × S2 the calculations were performed in the special case that c = 0. It would be

interesting to extend this to c 6= 0 but repeating the same steps is messy since the range of

the coordinate y is then given by the roots of a quartic, rather than, effectively, a quadratic.

In section 3, for the most general class of AdS5 solutions of [1] we found the conditions

for wrapped membranes to be supersymmetric by elucidating the appropriate generalised

calibration two-form which can be constructed from the Killing spinors. For the explicit

solutions we showed that various two-cycles are supersymmetric and then calculated the

conformal dimensions of the corresponding chiral primaries.

In section 4 we showed that for the most general solutions of [1] there is a consistent

Kaluza-Klein truncation to minimal gauged supergravity in five dimensions. The gauge

field corresponds to the abelian R-symmetry of the N = 1 SCFT. We used the consistent

truncation to determine some properties of the hydrodynamics of the dual CFT using the

results of [16]. In particular, we extended the domain of validity of the universal result

that η/s = 1/(4π).

The fact that the Kaluza-Klein reduction is a consistent truncation is somewhat sur-

prising. For cases in which the solutions have additional isometries, we do not expect, in

general, to be able to extend the result to include more gauge fields (e.g. see [17]). However,

for the special class of solutions with N = 2 supersymmetry contained in [1] (and further

analysed in [30]) it seems plausible that there is a consistent truncation that maintains the

whole SU(2)×U(1) R-symmetry. More generally it is natural to conjecture that the most

general supersymmetric AdSn solutions always admit consistent truncations to a gauged

supergravity that contain at least some if not all of the R-symmetry. It would be interesting

to investigate this conjecture using the classification results of [36].
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A. κ-symmetry

The condition for a probe membrane to be supersymmetric is that it satisfies the condi-

tion [31]

Γκε = ε, (A.1)
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Here ε is a D = 11 Killing spinor and the κ-symmetry projection matrix Γκ is given by

Γκ =
1

3!
√−g

εu1u2u3σu1u2u3
, (A.2)

where here g is the determinant of the induced world-volume metric and σu are induced

world-volume gamma matrices: if the membrane is defined by the maps xµ(ξ), we have

σu = ∂uxµΓµ where Γµ are the D = 11 Gamma matrices.

For the general D = 11 solutions of [1] the D = 11 Killing spinors take the form

ε = ψ ⊗ eλ/2ξ, (A.3)

where ψ is a Killing spinor on AdS5 and ξ is a spinor on M6 satisfying differential equations

written in [1]. The D = 11 gamma matrices can be decomposed as

Γa = ρa ⊗ γ7,

Γm = 1 ⊗ γm, (A.4)

where a, b = 0, 1, . . . , 4 and m,n = 1, 2, . . . , 6 are frame indices on AdS5 and M6 respec-

tively, and we have

[ρa, ρb]+ = −2ηab, [γm, γn]+ = 2δmn, (A.5)

with ηab = diag(−1, 1, 1, 1, 1) and ρ01234 = −1.

It will be useful to have an explicit expression for the Killing spinors ψ. In global

co-ordinates the metric on AdS5 can be written as

ds2(AdS5) = [− cosh2 rdt2 + dr2 + sinh2 rdΩ2
3], (A.6)

where

dΩ2
3 = (dα1)

2 + sin2 α1

[

(dα2)
2 + sin2 α2(dα3)

2
]

, (A.7)

is the metric of a unit three-sphere parametrised by the three angles (α1, α2, α3), with

0 ≤ α1, α2 ≤ π and 0 ≤ α3 ≤ 2π. The Killing spinors satisfy

Daψ ≡ (∂a −
1

4
ωabcρ

bc)ψ =
i

2
ρaψ (A.8)

and, in the obvious orthonormal frame, take the explicit form (see [32, 33])

ψ = ei r

2
ρ1ei t

2
ρ0e

α1

2
ρ21e

α2

2
ρ32e

α3

2
ρ43ψ0, (A.9)

where ψ0 is a constant spinor on AdS5.

It will also be useful to recall [1] that the spinor ξ on M6 can be written

ξ =
√

2 cos αη1 +
√

2 sinαη∗2 , (A.10)

where ζ = π/2 − 2α, and η1 and η∗2 are unit norm chiral spinors on the M6 satisfying the

projections

γ12η1 = γ34η1 = −γ56η1 = iη1, (A.11)

γ12η
∗
2 = γ34η

∗
2 = γ56η

∗
2 = iη∗2 . (A.12)
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Here the components 1, 2, 3, 4 refer to the base of the SU(2) structure defined by ξ and 5, 6

refer to the other two directions: see (2.2), (2.3) (and we refer to [1] for more details).

We are now in a position to show that the membranes wrapping the two-cycles cali-

brated by Y ′ that were considered in the text are in indeed supersymmetric. For simplicity

we only present the details for the solutions with B4 = KE4.

Case 1: Fibre membrane probe. We first consider a probe membrane wrapping the

S2 fibre parametrised by y, ψ. We therefore simply set ξu = (t, y, ψ). Using this embedding

and decomposing the D = 11 gamma-matrices we find that Γκ reduces to:

Γκ = ρ0 ⊗ γ7γ56. (A.13)

Since γ7γ56ξ = ξ we deduce that the condition Γκε = ε is equivalent to

ρ0ψ = ψ. (A.14)

If we now return to the explicit expression for the AdS5 spinor (A.9), we see that ρ0

commutes with all matrices on the right hand side except for ρ1. Thus we conclude that

in order to preserve supersymmetry we must place our membrane probe at r = 0, i.e. at

the centre of AdS5 space. Note that this condition arises because we have demanded that

the wrapped membrane is independent of t.

Case 2: Base membrane probe. We now consider membranes wrapping two-cycles on

the KE4 base. More precisely we show that a membrane wrapping a holomorphic cycle on

KE4 that is located at one of the poles of the fibration y = y1, y2 and at the centre of AdS5

is supersymmetric. To see this we set ξu = (t, ξs), s = 1, 2, and consider configurations

xi = xi(ξs), where xi, i = 1, 2, 3, 4 are coordinates on KE4. We now find

Γκ = ρ0 ⊗
1√
g′

(∂sx
i∂sx

j)γ7γij, (A.15)

where g′ is the determinant of the induced metric on the two-cycle in KE4. Suppose that

we are sitting at the pole y = y1 (the y = y2 case is similar). We then have sin ζ = −1

corresponding to α = π/2 and hence γ7γ12ξ = γ7γ34ξ = ξ. If we again demand

ρ0ψ = ψ, (A.16)

which is achieved by locating the cycle at the centre of AdS5, r = 0, we see that the

condition Γκε = ε is precisely that for a supersymmetric two-cycle in KE4. In particular,

we must restrict to holomorphic curves in KE4 in order to preserve supersymmetry.

B. Fermions and consistent truncation

We now show that we can extend the consistent Kaluza-Klein truncation to include the

fermions. We start with the variation of the D = 11 gravitino Ψµ:

δΨµ = ∇µε +
1

288
(Γµ

ν1ν2ν3ν4 − 8δν1

µ Γν1ν2ν3)Gν1ν2ν3ν4
ε , (B.1)
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and decompose the D = 11 Killing spinor as ε = ε ⊗ eλ/2ξ, where ε is an arbitrary spinor

on the external D = 5 space-time and ξ is the M6 Killing spinor for the undeformed

solutions. We will only need below the Kaluza-Klein ansatz for the external component of

the gravitino; in tangent space, it reads Ψa = ψa⊗e−λ/2ξ, where ψa is the D = 5 gravitino.

Combining this with the ansatz (4.1) for the metric and (4.5) for the four-form, and

substituting into (B.1) we find that the components tangent to M6,

δΨi = δ0Ψi +
1

144
Fabρ

abε ⊗
(

2γ7γi5 cos ζ +
(

γi
jk − 4δj

i γ
k
)

Jjk sin ζ − 2γi56

)

e−λ/2ξ,

δΨ5 = δ0Ψ5 +
1

144
Fabρ

abε ⊗
(

−4γ7 cos ζ + γ5
jkJjk sin ζ + 4γ6

)

e−λ/2ξ,

δΨ6 = δ0Ψ6 +
1

144
Fabρ

abε ⊗
(

2 (3 − γ7γ56) cos ζ + γ6
jkJjk sin ζ − 4γ5

)

e−λ/2ξ, (B.2)

vanish identically. Indeed, in (B.2), δ0 corresponds to the variation of the undeformed

gravitino, which vanishes due to the fact that ξ is the Killing spinor of the undeformed

solutions, and the F -dependent terms also vanish on account of the projections satisfied

by ξ that can be read off from (A.11), (A.12).

For the external directions δΨa of (B.1) we find, once the projections on ξ have been

taken into account,

δψa ⊗ e−λ/2ξ =

(

∇a − Aa∂ψ − 1

24
Fbc

(

ρa
bc + 4δb

aρ
c
)

− i

2
ρa

)

ε ⊗ e−λ/2ξ (B.3)

+
1

2
ρaε ⊗

(

i + ∂mλγ7γ
m +

1

144
e−3λγ7γ

m1m2m3m4gm1m2m3m4

)

e−λ/2ξ.

Using the fact that ξ = e
i

2
ψξ0, where ξ0 is independent of the coordinate2 ψ, and equation

(2.8) of [1], this becomes

δψa =

(

∇a −
i

2
Aa −

1

24

(

ρa
bc + 4δb

aρ
c
)

Fbc −
i

2
ρa

)

ε. (B.4)

This is precisely the supersymmetry variation of the gravitino in minimal D = 5 gauged

supergravity corresponding to the Lagrangian whose bosonic terms are as in (4.9).

C. Consistent truncation and normalisation of R-charge

For the explicit solution with B4 = S2 × T 2, the Kaluza-Klein ansatz (4.2), (4.3), (4.4)

takes the detailed form

ds2(M6) = e−6λds2(T 2) +
1 − cy

6
ds2(S2) + e−6λ sec2 ζdy2 +

1

9
cos2 ζ(Dψ + A)2, (C.1)

and, setting L = 1 here for simplicity,

G(4) = h3vol(S2)vol(T 2) +
[

h1vol(S2) + h2vol(T 2)
]

dy(Dψ + A)

+

[

α1vol(S2) + α2vol(T 2) +
1

9
dy(Dψ + A)

]

F +
1

3
dy(∗5F ), (C.2)

2This follows from equations (2.45), (2.32), (C.13), (B.6), (B.1) of [1] and the fact that λ is ψ-independent.

Here, the D = 5 gravitino ψa should not be confused with the M6 coordinate ψ.
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where hi = hi(y) are the functions appearing in the undeformed flux (2.33) and

α1 =
(cy − 1)y

9
,

α2 =
(cy − 1)y

3(a − y2)
. (C.3)

This can be dimensionally reduced and T -dualised (e.g. using the formula contained in

appendix C of [19]) to obtain a Kaluza-Klein ansatz for the AdS5 × Y p,q solutions of type

IIB. We find:

ds2 = ds2
5 +

1 − cy

6
ds2(S2) + e−6λ sec2 ζdy2 +

1

9
cos2 ζ(Dψ + A)2

+e6λ

[

dα − c

6
A +

−2y + y2c + ac

6(a − y2)
(Dψ + A)

]2

,

F5 = −4vol5 + (dα − c

6
A)

[

− 2(1 − cy)

9
vol(S2)dy(Dψ + A) +

(cy − 1)y

9
vol(S2)F

+
1

9
dy(Dψ + A)F +

1

3
dy(∗5F )

]

+
1 − cy

18
vol(S2)(∗5F ) +

c

18
dy(∗5)F (Dψ + A)

+
(cy − 1)2

54
vol(S2)F (Dψ + A). (C.4)

In this form we clearly see that we have gauged shifts of the ψ coordinate as well as the

α co-ordinate (when c is non-zero). In order to make the Reeb vector manifest, we can

employ the coordinate change α = −β/6 − cψ′/6, ψ = ψ′ to get

ds2 = ds2
5 +

1 − cy

6
ds2(S2) + e−6λ sec2 ζdy2 +

1

36
e6λ cos2 ζ(dβ + c cos θdφ)2

+
1

9
(dψ′ + A + A)2,

F5 = −4vol5 +
1

3
j(∗5F ) − 4

3
vol4(dψ′ + A + A) +

1

9
j(dψ′ + A + A)F, (C.5)

where θ, φ parametrise S2, and j, the Kähler-form on the locally Kähler-Einstein base

space of the Sasaki-Einstein space Y p,q orthogonal to the orbits of the Reeb vector ∂ψ′ , is

given by

j =
1 − cy

6
vol(S2) +

1

6
dy(dβ + c cos θdφ). (C.6)

In addition, vol4 is the volume form of the Kähler base, vol4 = 1
2j2, and the potential A,

given by A = − cos θdφ + y(dβ + c cos θdφ) satisfies dA = 6j. This is precisely the ansatz

discussed in [16]. In particular we see that we have gauged shifts of the coordinate ψ′ asso-

ciated with the Reeb vector, which is known to be dual to the R-symmetry. This provides

confirmation that the M -theory consistent truncation is indeed a reduction maintaining

the R-charge gauge field.

Let us now return to the consistent truncation for the most general solutions and

determine the correct normalisation of the gauge field. The consistent truncation ansatz

that we considered is invariant under the gauge transformations

ψ → ψ − ε,

A → A + dε. (C.7)
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To normalise the gauge field, following [20], we look for an object with known R-charge.

To do this we first think of our AdS5 × M6 solutions as special cases of solutions of the

form M1,3 × M7 where M1,3 is four-dimensional Minkowski space. As discussed in [1] the

relevant M7 has a (local) SU(3) structure given by a vector K ′, a three-form Ω′ and a

two-form J ′ (see [34]). It was shown in [35] that such solutions give rise to a superpotential

of the form

W ∼
∫

M7

(G(4) + iK ′dJ ′)Ω′, (C.8)

Since the superpotential has R-charge 2, we conclude that Ω′ has R-charge 2. Thus we just

need to relate Ω′ to the SU(2) structure on M6. In fact this was explicitly done in [1]:

Ω′ = e−3λΩ̂(− sin ζK1 − cos ζdr + iK2). (C.9)

The analysis of [1] shows that the important ψ dependence only appears in the two-form

Ω̂ and is of the form Ω̂ ∼ eiψ. We thus conclude that ψ/2 is the appropriately normalised

coordinate and hence that A/2 is the appropriately normalised gauge field.
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